Kinematics ${ }^{C}$ Dynamics of Linkages Lecture ID - Geometric Linkage Synthesis

Chapter Dbjectives

1. How to design a linkage that delivers a desired output
2. Types of linkages synthesis
3. Limitation of linkages synthesis
4. Geometric synthesis

Example

MEES41 - Lecture 1I: Feometric Linkage Synthesis
Slide 3 of 45
DSAU

Types of Synthesis

- Path Generation
- Control of a point in the plane such that it follows some prescribed path
- No orientation control to the link that contains the point of interest
- Motion Generation
- Control of a line in the plane such that it assumes some sequential set of prescribed pasitions
- Drientation of the link containing the line is important

Linkage Synthesis - Precisian Points

- The points prescribed far successive lacations of the output link
- Limited by the number of equations available
- Four bar linkage may have up to 5 precision points
- Usually, we use 2 a 3 ргесіsion points
- Reduces to a set of linear simultaneous equations
- More than 3 points requires complex software
- The solutions provide no guarantee as to the location of a linkage between precision points.

Linkage Synthesis - Verification

- Linkage synthesis procedures often provide solutions at the specified locations but not necessary in between these locations
- They say nothing about the linkage's behaviors between those pasitions
- It is passible that the resulting linkage will be incapable of maving from one precision point to another due to some constraint:
- Taggle pasition
- Transmissian angle

Linkage Synthesis - Taggle Pasitions

You need to check that the linkage can reach all of the specified design positions without encountering a taggle position.

Non-Grashof: Triple rocker (Should be Avoided)
Grashaf: Crank racker

Linkage Synthesis - Transmission angle

The angle between the output link and the coupler should be a minimum $\mu>40^{0}$ (optimum IV $^{\text {a }}$)

Geometric Linkage Synthesis - Case 1 2-Pasition Racker Dutput

Design a faur bar Grashof crank-rocker speed motar input to give 45ㅁ of rocker mation with equal time forward and back, from a constant speed motar input.

Geometric Linkage Synthesis - Case 1 2-Pasition Rocker Dutput - Solution: Step I

Draw the chord $\mathrm{B}_{1} \mathrm{~B}_{2}$ and extended it in either direction.

Geometric Linkage Synthesis - Case 1 2-Position Racker Dutput - Solution: Step 2

Select a convenient point D_{2} an the line $B_{1} B_{2}$ extended.

Geometric Linkage Synthesis - Case 1 2-Position Racker Dutput - Salution: Step 3

Bisect line segment $B_{1} B_{2}$, draw a circle of that radius about D_{2} and label the twa intersection of the circle and $B_{1} B_{2}$ extended, A_{1} and A_{2}

Geometric Linkage Synthesis - Case I 2-Position Rocker Dutput - Solutian: Step 4

Measure ground length I, crank length 2, and rocker length 4.

Geometric Linkage Synthesis - Case I 2-Position Rocker Dutput - Solution: Steps 5 and 6

Step 5: Check the Grashof condition and reda steps 2 to 5 with D_{2} further from [if non-Grashaf.

Step B: Build the linkage model and check its function and transmission angles.

Geometric Linkage Synthesis - Case 2 2-Pasition Rocker Dutput Motion

- Rocker Dutput-Two Pasition with Complex Displacement (Mation)
- Design a far bar linkage to move link $C D$ from $\Gamma_{1} D_{1}$ to $\Gamma_{2} D_{2}$.

Geometric Linkage Synthesis - Case 2 2-Pasition Racker Dutput Mation - Solution: Step 1

Draw construction line from point Γ_{1} to Γ_{2} and from point D_{1} to D_{2}

Geometric Linkage Synthesis - Case 2 2-Pasition Racker Dutput Mation - Solution: Step 2

Bisect line $\Gamma_{1} \Gamma_{2}$ and line $D_{1} D_{2}$ and extend their perpendicular bisectors to intersect at \square_{4}. Their intersection is the rotapole.

Geometric Linkage Synthesis - Case 2 2-Position Rocker Dutput Mation - Solution: Step 3

Select a convenient radius and draw an arc about the rotopole to intersect both lines $\square_{4} C_{1}$ and $\square_{4} C_{2}$. Label the intersection B_{1} and B_{2}.

Geometric Linkage Synthesis - Case 2 2-Pasition Rocker Dutput Mation - Solution: Steps 4-6

Steps 4-5: Repeat steps 4 and 5 of previous procedure
Step B: Make a model of the linkage and articulate it to check its function and its transmission angles

Geametric Linkage Synthesis - Case 3 2-Pasition Maving Pivats Mation

Design a fourbar linkage to move link CD from $\mathrm{C}_{1} \mathrm{D}_{1}$ to $\mathrm{C}_{2} \mathrm{D}_{2}$ (with moving pivots at C and D).

Geometric Linkage Synthesis - Case 3 2-Position Moving Pivots Mation - Step 1

Draw construction line from point Γ_{1} to Γ_{2} and from point D_{1} to D_{2}.

Geometric Linkage Synthesis - Case 3 2-Pasition Maving Pivats Mation - Step 2

Bisect line $\Gamma_{1} \Gamma_{2}$ and line $D_{1} D_{2}$ and extend their perpendicular bisectars in convenient directions. The rotapole will not be used in this solution.

Geometric Linkage Synthesis - Case 3 2-Pasition Maving Pivats Mation - Step 3

Select any convenient point on each bisector as the fixed pivats D_{2} and C_{4}, respectively.

Geometric Linkage Synthesis - Case 3 2-Position Maving Pivats Mation - Steps 4-6

Step 4:

Connect \square_{2} with \complement_{1} and call it link 2 . Connect D_{4} with D_{1} and call it link 4 .
Step 5:
Line $\left.\Gamma_{1}\right]_{1}$ is link 3 . Line $\mathbb{D}_{2} \mathrm{D}_{4}$ is link .
Step E :
Check the Grashof condition, and repeat steps 3 to 6 if unsatisfied.

Geometric Linkage Synthesis - Case 3 2-Position Maving Pivats Mation - Step 7

Make a model of the linkage and articulate it to check its function and its transmission angles

Combining Cases 1 and 3

Design a dyad to control and limits the extremes of motion of the linkages in the previous example to its twa design pasitions

MEES41 - Lecture 1I: Feometric Linkage Synthesis
Slide 26 of 45 D: LAU

Geometric Linkage Synthesis - Case 4 3-Pasition Mation Generation

Design a faur-bar Grashof linkage that moves C -D from the first position $\Gamma_{1} D_{1}$ to $\Gamma_{2} D_{2}$ and then to the position $\Gamma_{3} D_{3}$

Geometric Linkage Synthesis - Case 4 3-Pasition Mation Seneration - Step 1

Draw construction lines from point Γ_{1} to Γ_{2} and from Γ_{2} to \complement_{3}

Geometric Linkage Synthesis - Case 4 3-Pasition Mation Seneration - Step 2

Bisect line $\Gamma_{1} \Gamma_{2}$ and line $\Gamma_{2} \complement_{3}$ and extend their perpendicular bisector until they intersect. Label their intersection D_{2}.

Geometric Linkage Synthesis - Case 4 3-Pasition Mation Generation - Step 3

Repeat steps 2 and 3 for lines $D_{1} D_{2}$ and $D_{2} D_{3}$. Label the intersection D_{4}.

Geometric Linkage Synthesis - Case 4 3-Pasition Mation Generation - Step 4

Connect D_{2} with \complement_{1} and call link 2 . Connect D_{4} with D_{1} and call link 4 . Line $C_{[} D_{1}$ is link 3 . Line $\mathrm{D}_{2} \mathrm{D}_{4}$ is link .

Geometric Linkage Synthesis - Case 4 3-Position Mation Generation - Steps 5-7

Step 5: Check the Grashof condition
Step B: Construct Model and check toggle and transmission angles
Step 7: Construct Driver Dyade

Geometric Linkage Synthesis - Case 5 3-Position Mation Seneration - Alternate Attachment Paints

- Change the length of Link 3

Geometric Linkage Synthesis - Case 6 3-Pasition Mation Generation with fixed pivots

Design a four bar linkage which move the link CD shown from position $\mathrm{C}_{1} \mathrm{D}_{1}$ to $\mathrm{C}_{2} \mathrm{D}_{2}$ and then to position $\mathrm{C}_{3} \mathrm{D}_{3}$. Use specified fixed pivats D_{2} and D_{4}.

Geometric Linkage Synthesis - Case 6 3-Pasition Mation Seneration with fixed pivats - Step la

Draw construction arc from point Γ_{2} to \square_{2} and from D_{2} to \square_{2} whose radii define the side of triangle $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{D}_{2}$. This defines the relationship of the fixed pivat I_{2} to the coupler line CD in the second coupler position.

Geometric Linkage Synthesis - Case 6 3-Pasition Mation Seneration with fixed pivats - Step lb

Draw construction arc from point Γ_{2} to \square_{4} and from D_{2} to \square_{4} whose radii define the side of triangle $\mathrm{C}_{2} \mathrm{D}_{4} \mathrm{D}_{2}$. This defines the relationship of the fixed pivat Z_{4} to the coupler line CD in the second coupler position.

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivats - Step 2

Now transfer this relationship back to the first coupler position $\Gamma_{1} D_{1}$ so that the ground plane position $\left.\overline{2}_{2}{ }^{\prime}\right]_{4}^{\prime}$ bears the same relationship to $C_{1} D_{1}$ as $\square_{2} D_{4}$ bore to the second coupler pasition $\Gamma_{2} D_{2}$. We have inverted the problem.

Geometric Linkage Synthesis - Case 6 3-Pasition Motion Generation with fixed pivats - Step 3

Repeat the process for the third coupler position as shown in the figure and transfer the third relative ground link position to the first, or reference, position

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivats - Step 4

The three inverted position of the ground plane that carrespond to the three desired coupler positions are labeled $\mathrm{Z}_{2} \mathrm{O}_{4}, \mathrm{D}_{2}{ }^{\prime} \mathrm{Z}_{4}$ ', and $\mathrm{C}_{2}{ }^{\prime \prime} \mathrm{O}_{4}$ " and have also been renamed $\mathrm{E}_{1} \mathrm{~F}_{1}, \mathrm{E}_{2} \mathrm{~F}_{2}$ and $\mathrm{E}_{3} \mathrm{~F}_{3}$ as shown in the figure

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivots - Step 5

Find rotapoles G and H

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivots - Step $\overline{5}$

Connect G with E_{1} and call it link 2. Connect H with F_{1} and call it link 4. Line $E_{1} F_{1}$ is the coupler, link 3 . Line GH is the ground link I.

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivats - Step 7

The figure shows the re-inversion of the linkage in which points 5 and H are now the moving pivats on the coupler and $\mathrm{E}_{\mathrm{l}} \mathrm{F}_{1}$ has resumed its real identity as ground link $\mathrm{Z}_{2} \mathrm{D}_{4}$

Geometric Linkage Synthesis - Case 6 3-Pasition Motion Seneration with fixed pivots - Step 8a

Reintroduce the original line $\bar{C}_{1} \mathrm{D}_{1}$ in its correct relationship to line $\square_{2} \square_{4}$ at the initial position as shown in the original example. This form the coupler plane and defines a minimal shape of link 3.

Geometric Linkage Synthesis - Case 6 3-Pasition Motion Seneration with fixed pivots - Step 8 b

The angular motions required to reach the second and third position of line CD shown in the figure are the same as those defined in figure b for the linkage inversion

Geometric Linkage Synthesis - Case 6 3-Position Motion Generation with fixed pivats - Step Q $^{\text {P }}$

Step 9: Check the Grashof condition
Step 1D: Construct a model and check taggle and transmission

